Cognitive impairment in SCA-19

H. Jurgen Schelhaas¹, Bart P. C. van de Warrenburg¹, Gerard Hageman², Elly F. Ippel³,

Monique VAN HOUT² and Berry KREMER¹

'Institute of Neurology, University Medical Center, Nijmegen, The Netherlands

²Department of Neurology and Medical Psychology, Medical Spectrum Twente, Enschede, The Netherlands ³Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands

Abstract

The autosomal dominant cerebellar ataxias (ADCAs) are a heterogeneous group of neurodegenerative disorders characterised by progressive cerebellar dysfunction in combination with various associated features. Since 1993, ADCAs have been increasingly characterised in terms of their genetic mutation and are currently referred to as spinocerebellar ataxias (SCAs). The discovery of genetic abnormalities offers the opportunity to study the possible interaction between the identified gene mutation and cognitive function. In this study, we focus on the neuropsychological abnormalities in a Dutch ADCA family, in which a new locus was recently identified (SCA-19). The family members showed frontal-executive dysfunction, with global cognitive impairment occurring in some of the more severely affected patients. Interestingly, the neuropsychological profile of this new family seems to overlap that of individuals with various other SCAs. Apparently, similar pattern of neuronal degeneration in various SCA subtypes accounts for the neuropsychological dysfunction, which is thus not genotype specific.

Key words : ADCA ; SCA ; SCA-19 ; WCST ; Dementia.

Introduction

Autosomal dominant cerebellar ataxias (ADCAs) are a heterogeneous group of neurodegenerative disorders characterised by progressive cerebellar dysfunction in combination with various associated features. Harding (1984) found cognitive impairment in more than 25% of ADCA patients. Kish et al. (1994) documented a relationship between ataxia severity and neuropsychological test performance and stated that ADCAs are a heterogeneous group with respect to cognitive status. We now know that genetic heterogeneity partly underlies the variable spectrum of clinical features. ADCAs are currently classified in terms of the genetic mutation involved and are referred to, and numbered, as spinocerebellar ataxias (SCA 1-8, 10-14, 16-19, 21-23). Mutations have been identified for SCA 1, 2, 3, 6, 7, 8, 10, 12, 14 and 17 whereas the genes for SCA 4, 5, 11,13, 16, 19, 21, 22, and 23 remain to be isolated (http://www.gene. ucl.ac.uk/cgi-bin/nomenclature). The identification of the genetic abnormalities has provided the opportunity to study the possible interaction between the identified SCA mutation and cognitive function. Recently, we described a unique SCA-19 linked Dutch ADCA family with a phenotype that was characterised by relatively mild cerebellar ataxia, slow progression, myoclonus, postural tremor, and cognitive impairment (Schelhaas et al., 2001). Age at onset and severity of cerebellar symptoms suggest anticipation. In this report, we focus on the neuropsychological test performance of members of this family and correlate their performance with that of patients with other specific SCA mutations.

Patients and Methods

PATIENTS

Only those patients and their non-affected siblings who had been examined in our out-patient clinic were asked to participate in this neuropsychological study. Of the twelve affected members of a this four-generation family, six patients and two controls were willing to participate, including two patients (II-2 and II-6) and one control subject (II-4) of the second generation, three patients of the third generation (III-1, III-8, III-9), and one patient and his unaffected brother (IV-9 and IV-10) of the fourth generation (Fig. 1). Unfortunately, we were not able to include a control subject of the second generation because one of the two appropriate unaffected candidates was not willing to participate and the other suffered from leukaemia. The clinical features and the results of neuroimaging, evoked potentials, and EEG studies of the six patients are listed in table 1.

Global cognitive functions were assessed with the Mini Mental State Examination (Folstein,

FIG. 1. — SCA-19 pedigree

Table 1

Clinical features, neuroimaging, evoked potentials and EEG studies in 6 patients of a SCA-19 linked Dutch ADCA family

	Second (eldest) generation		Third generation			Sixth (youngest) generation
	II-2	II-6	III-1	III-8	III-9	IV-9
Clinical features						
Age (years)	87	80	55	55	51	11
Age at onset (years)	30	45	45	27	27	n.d.
Oculomotor disturbance	+	+	+	+	+	+
Total ataxia score	79/100	42/100	18/100	26/100	18/100	6/100
Upper limb reflexes	decreased	decreased	decreased	decreased	decreased	decreased
Knee reflexes	decreased	decreased	decreased	decreased	increased	decreased
Ankle reflexes	decreased	decreased	decreased	decreased	increased	decreased
Vibration sense	decreased	decreased	decreased	decreased	normal	decreased
Myoclonus	-	+	_	_	-	-
Neuroimaging (atrophy)						
Frontal cortex	+	_	_	_	_	_
White matter lesions	-	+	_	_	-	-
Pons	-	_	_	_	_	_
Cerebellar hemispheres	+	+++	+	+	+	+
Vermis	-	++	_	_	+	_
Evoked potentials						
TMS (CMCT)* *	n.d.	9.1	9.5	9.6	n.d.	10.2
EEG studies						
Background	Alpha rhytm	n.d.	Alpha rhytm	Alpha Rhytm	Alpha rhytm	n.d.
	(9-11Hz.)		(8-9 Hz.)	(9.5-10 Hz.)	(8-9 Hz.)	
Paroxysmal activity	Paroxysmal rhythmic	Paroxysmal	No	Paroxysmal	No	
	theta activity	rhythmic theta	paroxysmal	theta activity	paroxysmal	
	(temporal/parietal	activity (temporal/	activity	(fronto/temporal	activity	
	lobe)	parietal lobe)		lobe)		

TMS (CMCT), Transcranial magnetic stimulation (Central motor conduction time) **CMCT reference value (mean, SD) 12.3 ± 1.9 ; n.d. no reliable data; N, normal performance; F, patient failed to perform the test; + present, - absent.

Folstein and McHugh, 1975). Premorbid IQ was estimated on the basis of socioeconomic background and education (Luteyn and Van der Ploeg, 1983). Verbal and non-verbal intelligence were assessed with the Wechsler Adult Intelligence Scale-revised (WAIS-R; Wechsler, 1981), Wechsler Intelligence Scale for Children-Revised (WISC-R; Wechsler, 1974), Raven Standard Progressive Matrices (RSPM; Raven, 1960), and Raven Coloured Progressive Matrices (RCPM; Raven, 1965). Memory performance was tested with the WMS (MQ) (Wechsler, 1945) and the WAIS-Digit Span for immediate memory; the 15-Word Test (a Dutch version of the Rey auditory Verbal Learning Test) for immediate recall, delayed recall and recognition in the auditory domain (Heslinga *et al.*, 1983); and with the Recognition Memory Test for Faces for memory in the visual domain (Warrington, 1984). The Wisconsin Card Sorting Test (WCST; Grant and Berg, 1948) was used to evaluate executive functioning. Visuospatial function was measured with the Hooper Visual Organization Test (Hooper, 1958), Recognition Memory Test for Faces (Warrington, 1984), Rey Complex Figure test (Rey, 1941), and the Benton visual retention test (Benton, 1974). Cortical language functions were assessed with the SAN (Deelman *et al.*, 1983). Depression was rated with the Beck Depression Inventory (Beck *et al.*, 1961).

DESIGN AND ANALYSIS

There were too few affected individuals in this family to allow statistical analysis. This study was therefore designed as a descriptive study. All of the tests administered have been standardised and normative data have been published. As the subjects ranged in age from 7 to 87 years, the test battery had to be adapted for the eldest and youngest subject (Table 1). The three subjects of the eldest generation were tested in the nursery home they were living in, while the others were tested at the Department for Medical Psychology.

Results

Table 2 summarises the test performance of the individuals investigated, namely, two patients and the control subject of the eldest (second) generation, all patients of the middle (third) generation, and the affected patient and his unaffected (control) brother of the youngest (fourth) generation.

The members of the eldest generation were not able to complete the entire test battery. The estimated premorbid IQ was lower than 105 (education not completed) in affected and unaffected individuals of this generation but, in the past, had not affected activities of daily living. The MMSE score was higher than the usual cut-off of 24 in all subjects examined. One patient of this generation suffered from moderate depression. The test performance of the eldest patient (II-2) was very poor in nearly all modalities. The performance of the control subject II-4 on tests of non-verbal intelligence, visual spatial perception, and verbal fluency was worse, but that on the WCST was better, than that of patient II-6. In the middle (third) generation, again, estimated premorbid IQ was lower than 105, the MMSE score was higher than the usual cut-off of 24, and two patients suffered from depression. Patient III-1 performed better than his cousins (III-8 and III-9) on all tests, with the exception of the SAN test. The neuropsychological test performance of patients III-28 and III-34 revealed global cognitive impairment, depression, and poor performance on the

WCST. The individuals of this generation also displayed impulsive behaviour.

The neuropsychological test performance of the two brothers of the youngest (fourth) generation was markedly different. Whereas the unaffected brother (IV-10) had a normal performance on nearly all tests with the exception of verbal IQ, patient IV-9 showed general cognitive impairment, with a verbal and non-verbal IQ of 55 and 79, respectively. He also performed poorly on the WCST.

Discussion

The current neuropsychological study is unique in that it involved both affected and unaffected family members of the only SCA-19 linked ADCA family reported so far. Although the methodological design of the study made it possible to correct for family background and for "non-SCA related" cognitive performance, the interpretation of results was complicated by the limited number of affected and non-affected individuals, by the low estimated premorbid IQ of all family members, and by the finding that three patients suffered from depression.

The test performance of the eldest patient in the family was very poor in nearly all modalities. Compared with the unaffected subject, the other affected patient of the eldest generation had a poor performance on the WCST and suffered from moderate depression. Non-verbal intelligence, visual spatial perception, and language were fairly well preserved.

Although depression might be a complicating factor, Leroi et al. detected psychopathological (non-cognitive) disorders, mainly mood disorders and personality changes, in 77% of patients with degenerative cerebellar diseases. Furthermore, in a study comparing depressed patients with and without cognitive impairment, Dolan et al. reported that cognitively impaired patients had a significantly reduced resting cerebral blood flow (rCBF) in the medial prefrontal cortex and an increased rCBF in the cerebellar vermis. These changes, together with evidence from neuroimaging studies of atrophic (Shah et al.) and structural damage in this region (Schmahmann and Sherman, 1998), suggest that the cerebellum, and the vermis in particular, are involved in these disturbances of mood. Thus the depression seen in patients with SCA-19 may be attributable to the disease process. Interestingly, atrophy of the vermis was seen on MRI in the affected individual of this generation.

The differences in performance on the WCST but not on other neuropsychological tests may indicate that executive dysfunction is an important feature in this family. This suggestion is supported by the poor performance on the WCST and the impulsive behaviour, both of which are suggestive of a deficit in response suppression, seen in all patients

	U 1	TT 1*		1 11	0 111	0 111	0.111	117 1 A
	7-11	11-4°	0-11	1-111	0-11T	6-III	6-VI	TV-10 ^{**}
Age (years)	87	84	80	55	57	51	11	7
Duration (years)	56	1	34	34	31	25	2	
MMSF	25/30	27/30	26/30	27/30	26/30	26/30	1	
Mavimal admaticual damaa	NN	No	No		Drimory	Duimorri	Created	Drimory
	aducation	aducation	1NU admention	LUWEL	r IIIIaI y sebool	r IIIIIaI y	opeciai	r mai y sebool
	cuucation	cuucation completed	cuucation	secondary	SCHOOL	2011001	CUUCANON	
	 CUITPICICU 		-105		~105	/105		
Vorhol 10 /W/ 15 /W/16 D)	C01~		107	102	<10J		22	76
Non verbal (Parian CDM/CDM)	17/36	10/36	71/26	18/60	02 25/60	35/60	33 16/36 IO -70	76/36 IO ·110
MO (WMS)	89 (1/23)	101/1 5/23)	100 (0/23)	+0/00 101 (9/23)	73 (2, 5/23)	84 (1 5/23)	CI. ALOCINT	
Resconing and abstraction		(07/01/101						
(WAIS/WISC-R)								
Similarities	Ц	ľ	Ч	14	11	L	۲** ۲	۲** ۲
Comprehension	- F	- F	-	1 1	11	12	ر ۸**	ر ۲**
Arithmetic	- F	- F	-			10	**	×*
Digit snan (forward/hackward)	4.2	5/5	5/4	5/3	42	4/3	3/2	4/3
15-Words/8-Words test (8 if >70)	1				l	•	l	
Learning curve	2-4-2-3-4	2-3-4-3-5	3-4-5-6-5	2-4-6-5-7	3-5-4-6-4	2-2-5-5-5	3-5-5-10-11	8-8-10-10-12
Delayed recall	0/8	3/8	3/8	4/15	2/15	3/15	7/15	11/15
Recognition	13/16	15/16	14/16	28/30	21/30	21/30		
hits	7	7	6	8	8	9		
false alarm (false negative)	3	0	0	7	7	6		
Visualspatial/visual construction			1					
Hooper VOT	6	9.5	18	23.5	19.5	21		
WAIS-R (block design)		2		13	10	15	3	8
WAIS-R (object assembly)				19	12	24	4	6
Benton-VRT							Z	Z
RMT-F				38	38	39		
R-CFT (copy)							27	33
R-CFT (recall)							18	19.5
WCST .	ſ							
Categories		2	0	4	2	2		4
Derection of the compare	L L	/0 22	10	c/ 0c	20 00	20	67 1 1	41 17
PN/TE 100%	1	32 25%	98.5 %	22.7%	62.5%	74.2%	ţ	11/
Language								
WAIS/WISC-R (vocabulary)				41	20	21	1	5
SAN (naming)	18/18	18/18	18/18	18/18	18/18	18/18		
SAN (formulate sentences)	4/10	7/10	8/10	6/10	8/10	8/10		
BDI (degree of depression)	18	8	17	6	31	17		
* ADCA_nemetive family member	r. Scores are ram s	corae when not ind	icated otherwise • *	*Scalad score · MM	CF Mini Mental St	ata Evamination · G	IT Groninger Intel	igence test · W/AIS
• ADCA-fiegative faithly filefinde $W_{2} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	T; DUCIES ALE TAW S	cores, when not mu	icaleu ouleiwise.;	-Scaleu scole ; MIM	SE, IVIIII INEIIUI SU 22 MAR WASHING	ale Examination; O	T P D and a stringer Intel	ugelice test; wAld,
Wechsler Adult Intelligence Scale ; I	kaven SPM/CPM, K	aven standard progre	ssive matrices/colour	ed progressive matric	es; WMS, Wechsler	memory scale; KM	I-F, Kecognition M	emory lest for Faces
; Benton-VKI, Benton visual retention	on test ; K-CF1, Key	Complex Figure tex	1; WCS1, WISCONSIN	Lard Sorting Lest; I	N/1E 100%, percen	itage of errors that are	e perseverative ; SA	N, lest of the Dutch
Apnasia Foundation ; BDI, Beck De	pression inventory;	N, normal pertormar	ice ; F, patient railed	to pertorm the test. B	old numbers : abnoi	rmai resuit. It a space	e is lett blank there a	tre now reliable data
(or the test is not suitable (age).								

Neuropsychological tests

Table 2

202

	bes	
Table 3	Summary of literature on neuropsychological testing in specific spinocerebellar ataxia (SCA) genoty	

reference	d patients Kish, 1994; Burk, 2003	d patients Storey, 1999 ;Gambardella, 1998, Burk, 2003	d patients Maruff, 1996 ; Burk, 2003	formed.	ormed.	opsychological		ent even at old age. Enevoldson, 1994 ; Gouw, 1994 : Jobsis, 1997	Juvonen, 2000	airment not reported.	al feature.	fferent families O'Hearn, 2001 ; Fujigasaki, 2001	kill acquisition. Herman-Bert, 2000		formed.		Fujigasaki, 2001	d patients Schelhaas, this study	children Vuillaume, 2002	amination Chung M-y. 2003		nclature)	on and aggressive Van Swieten, 2003	
Cognitive impairment	Frontal executive dysfunction with general cognitive decline in the more severely affecte	Frontal executive dysfunction with general cognitive decline in the more severely affecte	Frontal executive dysfunction with general cognitive decline in the more severely affecte	Cognitive impairment has not been reported. No extensive neuropsychological study per	Cognitive impairment has not been reported. No extensive neuropsychological study per	Pure cerebellar syndrome, cognitive impairment has not been reported, no extensive neu	study performed.	Cognitive impairment as a rare feature. Most patient remain responsive to their environn	Cognitive impairment in 6 out of 15 individuals in a Finnish population.	"Pure cerebellar syndrome with epilepsy" Cortical involvement suggested, cognitive imp	"Pure cerebellar syndrome with mild hyperreflexia" Cognitive impairment is not a clinic	Poor anterograde memory formation, disorientation, apraxia and hemi-inattention in 2 di	Childhood onset cerebellar ataxia with moderate mental retardation and delay in motor s	Intellectual impairment was global with IQ's of 62-76.	Cognitive impairment has not been reported. No extensive neuropsychological study per	"Pure cerebellar ataxia and head tremor". Cognitive impairment has not been reported.	Signs of dementia in four members of a Belgian family	Frontal executive dysfunction with general cognitive decline in the more severely affecte	Moderate cognitive impairment in 2 patients and severe cognitive impairment in 2 young	SCA-19 and SCA-22 share the same locus. In the Chinese family neuropsychological ex	disclosed a normal cognitive function.	Clinical features have not (yet) been described (http ://www.gene.ucl.ac.uk/cgi-bin/nome	Impairment in memory function, abstract thinking, and word fluency, as well as depressi	outhursts in members of one family
Locus	6p	12q	14q	16q	11cen	19p		3p	13q	22q	15q	5q	19q		19q	8q	TBP gen							
Entity	SCA-1	SCA-2	SCA-3	SCA-4	SCA-5	SCA-6		SCA-7	SCA-8	SCA-10	SCA-11	SCA-12	SCA-13		SCA-14	SCA-16	SCA-17	SCA-19	SCA-21	SCA-22		SCA-23	FGF-14	

of the middle (third) generation. In this generation, one patient suffered from depression and, as in the oldest generation, cerebral MRI showed atrophy of the vermis.

There were profound differences in the neuropsychological test performance of both brothers of the youngest (fourth) generation. Whereas the unaffected sibling performed poorly only on verbal IQ, his brother showed general cognitive impairment, with a verbal and non-verbal IQ of 55 and 79, respectively. Again the performance on the WCST was very poor.

Table 2 summarises the literature on neuropsychological testing in all currently classified SCA genotypes. Although various reports failed to mention cognitive impairment as a feature of a specific SCA type, frontal executive dysfunction with generalised cognitive impairment in some severely affected patients has been described in neuropsychological studies of SCA-1, SCA-2, and SCA-3 (Burk et al. 2003, Kish et al., 1994; Geschwind DH, 1999; Bürk et al., 1999; Gambardella et al., 1998; Storey et al., 1999; Maruff et al., 1996). Indeed, our study of SCA-19 suggests that the cognitive deficits of SCA patients do not seem to be genotype specific but rather reflect the pattern of neuronal degeneration, emphasising the importance of intact cerebellar pathways to cognition.

REFERENCES

- BECK A. T., WARD C. H., MENDELSON M., MOCK J., ERBAUGH J. K. An inventory for measuring depression. Arch. Gen. Psychiatry, 1996, 4: 561-567.
- BENTON A. L. The revised visual retention test (4th ed.). New York : Psychological corporation, 1974.
- BÜRK K., GLOBAS C., BOSCH S., GRABER S., ABELE M., BRICE A. *et al.* Cognitive deficits in spinocerebellar ataxia 2. *Brain*, 1999, **122** : 769-777.
- BÜRK K., GLOBAS C., BOSCH S., KLOCKGETHER T., ZUHLKE C. *et al.* C Cognitive deficits in spinocerebellar ataxia 1,2, and 3. *J. Neurol.*, 2003, **250** : 207-211.
- CHUNG M. Y., LU Y. C., CHENG N. C., SOONG B. W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. *Brain*, 2003, **126** : 1293-1299.
- DEELMAN B. G., KONING-HAANSTRA M., LIEBRAND W. B. G., VAN DEN BURG W. SAN test een afasie test voor auditief en mondeling taalgebruik (in Dutch). Lisse : The Netherlands, Swets and Zeitlinger, 1983.
- DOLAN R. J., BENCH C. J., BROWN R. G., SCOTT L. C., FRISTON K. J., FRACKOWIAK R. S. J. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. *J. Neurol. Neurosurg. Psychiatry*, **55** : 768-773.
- ENEVOLDSON T. P., SANDERS M. D., HARDING A. E. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. *Brain*, 1994, **117** : 445-460.
- FOLSTEIN M. F., FOLSTEIN S. E., MCHUGH P. R. Minimental state. J. Psychol. Res., 1975, 12: 189-198.

- FUJIGASAKI H., VERMA I. C., CAMUZAT A., MARGOLIS R. L., ZANDER C. *et al.* SCA12 is a rare locus for autosomal dominant cerebellar ataxia : a study of an Indian family. *Ann. Neurol.*, 2001, **49** : 117-121.
- GAMBARDELLA A., ANNESI G., BONO F., SPADAFORA P., VALENTINO P., PASQUA A. A. CAG repeat length and clinical features in three Italian families with spinocerebellar ataxia type 2 (SCA2): early impairment of Wisconsin Card Sorting Test and saccade velocity. J. Neurol., 1998, 245: 647-652.
- GESCHWIND D. H. Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch. Neurol., 1999, 56: 20-22.
- GOUW L. G., DIGRE K. B., HARRIS C. P., HAINES J. H., PTACEK L. J. Autosomal dominant cerebellar ataxia with retinal degeneration : Clinical, neuropathological, and genetic analysis of a large kindred. *Neurology*, 1994, **44** : 1441-1447.
- GRANT D. A., BERG E. A. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card sorting problem. J. *Clin. Exp. Neuropsychol.*, 1948, **34** : 404-411.
- HARDING A. E. Inherited Ataxias and related disorders. New York, NY : Churchill Livingstone Inc, 1984.
- HERMAN-BERT A., STEVANIN G., NETTER J. C., RASCOL O., BRASSAT D., CALVAS P. *et al.* Mapping of spinocerebellar ataxia 13 to chromosome 1913.3-13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. *Am. J. Hum. Genet.*, 2000, **67** : 229-235.
- HESLINGA H .W., VAN DEN BURG, SAAN R. J. *The 15-Words-test*. Internal report nr 8324, Department Medical Psychology, State University Groningen, The Netherlands 1983.
- HOOPER H. E. The hooper Visual Organisation test manual. Los Angeles : Western Psychological Services, 1958.
- JOBSIS G. J., WEBER J. W., BARTH P. G., KEIZERS H., BAAS F., SCHOONEVELD. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II) : clinical and neuropathological findings in two pedigrees and genetic linkage to 3p12-p21.1 *J. Neurol. Neurosurg. Psychiatry*, 1997, **62** : 367-371.
- JUVONEN V., HIETALA M., PAIVARINTA M., RANTAMAKI M., HUKAMIES L., KAAKOLA S. *et al.* Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. *Ann. Neurol.*, 2000, **48** : 354-361.
- KISH S. J., EL-AWAR M., STUSS D., NOBREGA J., CURRIER R., AITA J. F. Neuropsychological test performance in patients with dominantly inherited spinocerebellar ataxia : relationship to ataxia severity. *Neurology*, 1994, **44** : 1738-1746.
- LEROI I., O'HEARN E., MARSH L., LYKETSOS C. G., ROSENBLATT A. Psychopathology in patients with degenerative cerebellar diseases : a comparison to Huntington's disease. *Am. J. Psychiatry*, 2002, **159** : 1306-1314.
- LUTEYN F., VAN DER PLOEG F. A. E. De groninger Intelligentie Test (The Groninger Intelligence Test). Lisse, The Netherlands, Swets and Zeitlinger, 1983.
- MARUFF P., TYLER P., BURT T., CURRIE B., BURNS C., CURRIE J. (1996). Cognitive Deficits in Machado-Joseph Disease. Ann. Neurol., 1996, **40** : 421-427.

- O'HEARN E., HOLMES S. E., CALVERT P. C., ROSS C. A., MARGOLIS R. L. SCA-12 : Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. *Neurology*, 2001, **56** : 299-303.
- RAVEN J. C. Guide to the standard progressive matrices. London : H.K. Lewis, 1960.
- RAVEN J. C. Guide to the coloured progressive matrices. London : H.K. Lewis, 1965.
- REY A. L' examen psychologique dans les cas d'encephalopathie traumatique. Arch. Pyschol., 1941, 28 : 286-340.
- SCHELHAAS J., IPPEL P. F., HAGEMAN G., SINKE R. J., VAN DER LAAN E. N., BEEMER F. A. Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. *J. Neurol.*, 2001, **248** : 113-120.
- SCHMAHMANN J. D., SHERMAN J. C. The cerebellar cognitive affective syndrome. *Brain*, 1998, **121** : 561-579.
- SHAH S. A., DORAISWAMY P. M., HUSSAIN M. M., ESCOLONA P. R., NA C., FIGIEL G. S. *et al.* Posterior fossa abnormalities in major depression : a controlled magnetic resonance imaging study. *Acta Psychiatr. Scand.*, 1992, **85** : 474-479.
- STOREY E., FORREST S. M., SHAW H. S., MITCHELL P., MCKINLEY GARDNER R. J. Clinical features of a pedigree displaying prominent frontal-executive dysfunction. *Arch. Neurol.*, 1999, **56** : 43-50.

- VAN SWIETEN J. C., BRUSSE E., DE GRAAF B. M., KRIEGER E., VAN DE GRAAF R. *et al.* A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia. *Am. J. Hum. Genet.*, 2003, **72** : 191-199.
- VUILLAUME I., DEVOS D., SCHRAEN-MASCHKE S., DINA C., LEMAINQUE A. *et al.* A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3p15.1. *Ann. Neurol.*, 2002, **52** : 666-670.
- WARRINGTON E. K. *Recognition Memory Test.* Windsor, UK :NFER-Nelson, 1984.
- WECHSLER D. A standardized memory scale for clinical use. J. Psychol., 1945, **19** : 87-95.
- WECHSLER D. WISC-R manual. Wechsler Intelligence Scale for Children-Revised. New York : Psychological Corporation, 1974.
- WECHSLER D. WAIS-R manual. New York : Psychological Corporation, 1981.

H. J. SCHELHAAS,

- Institute of Neurology, University Medical Center, Nijmegen,
 - PO Box 9101,
- 6500 HB Nijmegen (The Netherlands). E-mail : H.Schelhaas@neuro.umcn.nl.